Buitenaards leven: verschil tussen versies

Uit Wikikids
Naar navigatie springen Naar zoeken springen
(Versie 845016 van Tiago (overleg) ongedaan gemaakt)
Label: Ongedaan maken
 
(26 tussenliggende versies door 12 gebruikers niet weergegeven)
Regel 1: Regel 1:
  +
[[Bestand:Gray Alien at UFO Museum, Roswell (cropped).jpg|thumb|[[Voorstelling]] van hoe een buitenaards wezen eruit zou kunnen zien]]
{{Pabo|Pabo={{Pabo}}}}
 
  +
'''Buitenaards leven''' is leven dat niet op aarde voorkomt. Deze buitenaardse wezens worden ook wel aliens genoemd. Al jaren lang wordt en gefantaseerd over hoe ze eruit zien. Toen de [[sciencefiction]] opkwam, werden ze afgebeeld als groene mannetjes met grote ogen. Maar nu het buitenaards leven steeds dichterbij komt, krijgen wetenschappers een beter beeld van de aliens. Je het zou het misschien niet verwachten, maar het lijkt er niet op dat de buitenaardse wezens groene marsmannetjes zijn. [[Ruimtevaart]]organisaties zoals [[NASA]] hebben een paar [[mogelijk bewoonbare planeten]] ontdekt buiten ons [[zonnestelsel]]. Deze planeten liggen in de [[bewoonbare zone]] en daar zou dus misschien leven kunnen zijn (maar we weten het niet zeker). Tot nu toe is er nog geen buitenaards leven ontdekt. De Nederlandse [[astronaut]] [[André Kuipers]] heeft in 2019 gezegd dat hij denkt dat we binnen 10 jaar buitenaards leven zullen vinden.
[[Bestand:Alien icon.svg|miniatuur|200x200px|Sciense-fiction alien]]
 
Buitenaards leven is leven dat niet op aarde voorkomt. Buitenaardse wezens worden ook aliens genoemd. Al jaren lang wordt er gespeculeerd over hoe ze eruit zien. Tijdens de opkomst van [[Sciencefiction film|science-fiction]] werden ze afgebeeld als groene mannetjes met grote ogen, maar nu het buitenaards leven steeds dichterbij komt, krijgen wetenschappers een beter beeld van de aliens. Je zou het misschien niet verwachten, maar het lijkt er niet op dat ze aan de verwachtingen van de science-fiction voldoen.
 
 
== Buitenaards leven volgens religie ==
 
De Bijbel geeft een antwoord op de vraag: “Is er leven op andere planeten”. Wel staat er in De Bijbel dat de aarde op dag één van de scheppingsweek wordt geschapen. De zon, maan en de sterren werden op dag vier geschapen. De aarde is dus speciaal, omdat hij is gevormd om bewoond te worden. Hemellichamen werden geschapen om een scheiding te brengen tussen dag en nacht, dagen en jaren. In de statenbijbel, ofwel het eerste testament van de bijbel wordt her volgende over buitenaards leven geschreven:
 
 
De schepper van dit universum bracht 2.000 jaar geleden een bezoek aan de aarde. Toen de volheid van de tijd gekomen was, zon God Zijn Zoon uit. Het woord is vlees geworden en heeft onder ons gewoond. En wij hebben gezien en getuigen dat de Vader de Zoon gezonden heeft als Zaligmaker van de wereld. Dit is een betrouwbaar woord en alle aanneming waard dat Christus in de wereld is gekomen om zondaars zalig te maken. (EO, 2004/2007; Verhoeven, z.d.).
 
 
Ook De Koran geeft een antwoord. In De Koran staat dat de mens contact zal krijgen en omdat Allah de schepper is van de hemelen en de aarde, zal de kennismaking positief zijn. Op de opstandingsdag zullen de bewoners van de hemelen en de mensen op aarde een terugkeer van God meemaken (Islam-Koran, z.d.). Zo staat er in de Koran: Ieder die in de hemelen en op aarde is, komt als dienaar tot de Erbarmer. Hij heeft hen nauwkeurig geteld en een ieder van hen zal de opstandingsdag alleen tot Hem komen. Tot zijn tekenen behoort de schepping van de hemelen, de aarde en de schepselen die hij in beiden heeft verspreid. En als Hij wil, is Hij bij machte om hen bijeen te brengen. God heeft zeven hemelen geschapen en de aarde, zodat jullie weten dat God almachtig is en Hij alles met Zijn kennis omvat (Risala, 2005-2016).
 
 
Het Jodendom sluit buitenaards leven sinds de 13<sup>e</sup> eeuw niet buiten. Zo is er gezegd dat de omvang van het universum enig besef geeft aan Gods grootheid. Rabbi Albo zei dat buitenaardse wezens geen zelfstandige betekenis hebben, omdat het heelal voor de mensheid is geschapen. Het Jodendom denkt dat er buitenaards leven is, maar welk nu hebben de schepselen en werelden? De Kabbala geeft daar antwoord op: ‘Iedere Tsaddiek (heilige) krijgt een ster, waarin hij zijn spirituele capaciteiten kan ontplooien. De wijzen voorzagen een overbevolkte aarde en dat deze te weinig ruimte zou bieden voor alle Tsaddiekiem’ (Evers, 2014).
 
   
 
== Wat is er nodig om te kunnen leven? ==
 
== Wat is er nodig om te kunnen leven? ==
  +
[[Bestand:Water drop 001.jpg|miniatuur|260x260px|Vloeibaar water is belangrijk.]]
Wetenschappers kijken naar drie aspecten: water, energie en chemie. Alle cellen op aarde bevatten vloeibaar water en het leven is in zee ontstaan. Daarom denken astrobiologen dat een stabiele hoeveelheid vloeibaar water een eerste voorwaarde is voor leven zoals wij dat kennen. Alle levende organismen hebben een stofwisseling en die energie vereist. Deze kan van de zon afkomen of wordt uit voedsel gehaald. Tot slot is het leven op aarde opgebouwd uit elementen van koolstof, waterstof en stikstof. Ook deze moeten dus terug te vinden zijn (Grubbe, 2017).
 
  +
Om te kunnen leven heb je net zoals hier op aarde [[water]], [[energie]] (uit eten) en [[Zuurstof (element)|zuurstof]] nodig. De [[wetenschapper]]s zijn er al achter gekomen dat er in het heelal geen zuurstof is en daarom kijken de wetenschappers naar water, energie en [[Scheikunde|chemie]]. Alle cellen van levende wezens (mens, dier en plant) op aarde bevatten vloeibaar water (waaronder bloed) en het leven is in zee ontstaan. Daarom denken de wetenschappers dat een stabiele hoeveelheid vloeibaar water een voorwaarde is voor leven zoals wij dat hier op aarde kennen. Alle levende dieren en planten hebben een [[stofwisseling]] die energie vereist. Dat kan van de [[zon]] afkomen of uit voedsel worden gehaald. Wetenschappers hebben ontdekt dat de aarde is opgebouwd uit stoffen: [[Waterstof (element)|waterstof]], [[koolstof]] en [[Stikstof (element)|stikstof]]. Deze stoffen moeten ook elders te vinden zijn (Grubbe, 2017). Met vooral schotelantennes speuren de astronomen naar verre planeten waar deze stoffen voor kunnen komen, want misschien is daar dan ook leven.
   
Volgens professor John Heise is het belangrijk om eerst te onderzoeken hoe het leven op aarde is ontstaan. Veel wetenschappers gaan ervan uit dat het leven is ontstaan uit niet-levende materie. Vermoeddelijk begon het met een RNA-fase, een soort molecuul dat DNA kopieert en er op lijkt. ‘Als je eenmaal RNA hebt, dan heb je een begin, omdat het zichzelf kan reproduceren’, aldus Heise.
+
Als we het aan professor [[John Heise]] vragen, is het belangrijk om eerst te onderzoeken hoe het leven hier op aarde is ontstaan en daarna pas de ruimte in te gaan om daar te zoeken. Veel wetenschappers gaan ervan uit dat er eerst niet-levende materie is ontstaan als basis voor levende materie. Waarschijnlijk begon het met een [[RNA]]-fase, een heel klein klein deeltje dat [[DNA]] kopieert en erop lijkt. "Als je eenmaal RNA hebt, dan heb je een begin, omdat het zichzelf kan maken", zei John Heise.
   
Om in te schatten hoe groot de kans is dat er op een bewoonbare planeet leven ontstaat, dan is het belangrijk om te weten hoe lang de processen duren. Als het ontstaan van het leven schaalt naar een jaar, ontstaat de aarde op 1 januari. Begin maart ontstaat de eerste blauwalg in zee en op 31 juli krijgt de aarde als gevolg daarvan een zuurstofrijke atmosfeer. 15 november ontstaan de eerste waterdiertjes en op 15 december de eerste zoogdieren. Op 31 december 22:00 loopt de eerste mens rond en om 23:50 ontstaan de homo Sapiens (Dekennisvannu, 2012).
+
Om in te schatten hoe groot de kans is dat er op een bewoonbare planeet leven ontstaat, dan is het belangrijk om te weten hoe lang het duurde voordat er hier op aarde leven ontstond. We vergelijken zo het ontstaan van de aarde met de tijd van 1 jaar: als je bedenkt dat op 1 januari de aarde ontstaat en op 31 december 23:50 uur lopen de mensen rond, dan ontstaat begin maart de eerste [[blauwalg]]. Op 31 juli krijgt de aarde daardoor een zuurstof-rijk water. Dat houdt in dat er vanaf 1 januari tot 1 maart niet erg veel gebeurde. Toen er eindelijk iets gebeurde moesten we nog 4 maanden wachten voordat er zuurstof in de lucht komt. Op 15 november ontstaan de eerste water-diertjes en op 15 december de eerste [[zoogdieren]]. Dus vanaf juli tot november heeft de aarde tijd nodig gehad om de eerste waterdiertjes te ontwikkelen. Daarna duurt het nog een maand voordat de eerste zoogdieren ontstaan. Op 31 december om 22:00 loopt de allereerste mens rond en om 23:50 lopen de mensen ([[Homo sapiens]]) rond zoals die we van nu kennen (uit: Dekennisvannu, 2012).
   
Astronoom Marco Spaans zegt dat het heelal een bijzonder gunstige omgeving is voor het ontstaan van leven, omdat de 3 basisvoorwaarde in overvloed aanwezig is in het heelal. “Krijgt het leven kans om te overleven?”, is de vraag die hij zich afvraagt. De eerste cruciale stap is de vorming van een cel, wat op aarde een miljard jaar duurde. De omstandigheden moeten al die tijd redelijk stabiel zijn. Op aarde was alles goed geregeld, we zitten in een stabiele baan, hebben een grote maan die de aardas staande houdt, een magneetveld dat kosmische straling tegen houdt en we worden beschermd door Jupiter die puin opzuigt”.
+
Een [[astronoom]] [[Marco Spaans]] zegt dat het heelal een hele goede omgeving is voor het ontstaan van leven, omdat de drie basisvoorwaarden in overvloed aanwezig is. De drie basisvoorwaarden waren zoals gezegd water, energie en chemie. Marco Spaans stelt niet de vraag: wat is er nodig om te kunnen leven, maar de vraag: "Krijgt het leven de kans om te overleven?" De eerste stap is de vorming van een cel, wat op aarde een miljard jaar (1.000.000.000) duurde. De omstandigheden moeten al die tijd gelijk blijven. Op aarde was dat goed geregeld. We zitten in een rustige baan, we hebben een grote [[maan]] die de aarde op zijn plek houdt en een [[Magnetisme|magnetisch veld]] dat gevaarlijke [[straling]] tegenhoudt. Ook worden we beschermd door [[Jupiter (planeet)|Jupiter]] die puin uit de ruimte opzuigt.
   
Spaans zegt dat ze goede gronden hebben om aan te nemen dat in het één van de duizend gevallen lukt. Dus als er een miljard planeten in de leefbare zone zitten, dan zijn er een miljoen waar een vorm van primitief leven voorkomt. Vervolgens wordt de vraag gesteld: “Op hoeveel van die miljoen planeten is er uit dat primitieve leven iets intelligents gegroeid”?  Belangrijk om je te realiseren is dat 99,99% van het leven op aarde uit het primitieve soort bestaat. 0,01% bestaat uit plantjes en kwallen, wij mensen zijn het topje. Daarnaast is de aarde 4,5 miljard jaar oud en de mens gaat pas een paar miljoen jaar mee. Ons technologisch vermogen is nog jonger en 50 jaar worden er krachtige radiosignalen uitgezonden. Een paar eeuwen op vier miljard jaar is niet meer dan een flits. Voor een andere beschaving zijn wij dus heel moeilijk te vinden (Engels, 2013).
+
Marco Spaans zegt dat ze weten dat het leven in één op de duizend gevallen ontstaat. Dus als er een miljard planeten in een leefbare zone zitten, dan zijn er een miljoen planeten waar [[bacteriën]] zouden kunnen leven. Even in wat gemakkelijkere cijfers: Marco Spaans zegt als er 1000 planeten in een leefbare zone zitten, dat er 1 planeet is waar bacteriën kunnen leven. Maar er zijn geen 1.000 planeten, maar heel veel meer! Dus dat zijn heel veel planeten waar bacteriën kunnen ontstaan! Als we dat weten, willen we weten op hoeveel van die planeten iets [[intelligent]]s zoals een mens (of een vergelijkbaar wezen) kan groeien. Het is belangrijk dat je bedenkt dat 99,99% van het leven op aarde uit bacteriën bestaat. 0,01% bestaat uit plantjes en kwallen en wij mensen zijn het topje. Ook moet je bedenken dat de aarde 4,5 miljard jaar oud is en dat de mens pas een paar miljoen jaar op deze aarde mee gaat. Ons [[Technologie|technologisch]] vermogen is zelfs nog jonger en we zenden pas 50 jaar krachtige [[Radiosignaal|radiosignalen]] uit. Een paar eeuwen op vier miljard jaar is niet meer dan een flits, als je het ontstaan van de aarde weer even vergelijkt met een jaar. Dat betekent dat wij voor een andere beschaving heel moeilijk te vinden zijn (Engels, 2013).
   
 
== Leven in ons zonnestelsel ==
 
== Leven in ons zonnestelsel ==
  +
[[Bestand:Planeetgroottes.jpg|gecentreerd|miniatuur|643x643px|Ons zonnestelsel]]
'''Mercurius'''
 
  +
'''[[Mercurius (planeet)|Mercurius]]'''
   
De temperatuur ligt tussen 465°C overdag en -185°C’s nachts. Door de ontbrekende atmosfeer wordt er geen ultraviolet straling tegen gehouden. De planeet is te klein om een dampkring vast te houden, waardoor er geen vloeibaar water is. Wetenschappers denken dat het onwaarschijnlijk is dat de planeet leven heeft gekend.
+
De temperatuur ligt tussen 465&nbsp;°C overdag en -185&nbsp;°C’s nachts. Door de ontbrekende atmosfeer wordt er geen ultraviolet straling tegen gehouden. De planeet is te klein om een dampkring vast te houden, waardoor er geen vloeibaar water is. Wetenschappers denken dat het onwaarschijnlijk is dat de planeet leven heeft gekend.
   
'''Venus'''
+
'''[[Venus (planeet)|Venus]]'''
   
De atmosfeer houdt de warmte goed vast door de grote hoeveelheid koolstofdioxide. De temperatuur loopt op tot 475°C. Hoog in de atmosfeer is het 25°C. Wolken bestaan voor 75% uit zwavelzuur en 25% uit waterdamp. Het is mogelijk dat daar leven bestaat, maar de kans is klein. Wetenschappers vermoeden dat het verleden van Venus zachter was, omdat hij even groot is als de aarde en het uit hetzelfde soort gesteente bestaat. Als de modellen kloppen, bestaat er kans dat er leven is geweest (Vium, 2016).
+
De atmosfeer houdt de warmte goed vast door de grote hoeveelheid koolstofdioxide. De temperatuur loopt op tot 475&nbsp;°C. Hoog in de atmosfeer is het 25&nbsp;°C. Wolken bestaan voor 75% uit zwavelzuur en 25% uit waterdamp. Het is mogelijk dat daar leven bestaat, maar de kans is klein. Wetenschappers vermoeden dat het verleden van Venus zachter was, omdat hij even groot is als de aarde en het uit hetzelfde soort gesteente bestaat. Als de modellen kloppen, bestaat er kans dat er leven is geweest (Vium, 2016).
   
'''Maan'''
+
'''[[Mars (planeet)|Mars]]'''
   
De temperatuur ligt tussen de 116°C en -170°C. De maan heeft geen dampkring, geen oppervlakte water en er is geen (fossiel) leven gevonden. Mogelijk is er waterijs bij de polen. Toch weten wetenschappers het zeker dat de maan een dode wereld is geweest.
+
De atmosfeer is te ijl om warmte vast te houden. In de zomer komt de temperatuur rond de evenaar net boven de nul uit. Er is geen vloeibaar water, wel ijs en [[permafrost]]. Door de atmosfeer wordt er geen ultraviolet straling tegengehouden. Toch denken wetenschappers dat er primitief leven is geweest.
   
  +
'''[[Jupiter (planeet)|Jupiter]]'''
'''Mars'''
 
 
De atmosfeer is te ijl om warmte vast te houden. In de zomer komt de temperatuur rond de evenaar net boven de nul uit. Er is geen vloeibaarwater, wel ijs en permafrost. Door de atmosfeer wordt er geen ultraviolet straling tegengehouden. Toch denken wetenschappers dat er primitief leven is geweest.
 
 
'''Jupiter'''
 
   
 
De atmosfeer bestaat uit waterstof en helium. Door de waterdruppeltjes in de wolken, zou het geschikt kunnen zijn voor primitief leven. Echter hebben we op aarde nog geen dieren of planten gevonden die zich aan de omstandigheden in de wolken hebben aangepast. Daarom denken wetenschappers dat de kans op leven daar klein is.
 
De atmosfeer bestaat uit waterstof en helium. Door de waterdruppeltjes in de wolken, zou het geschikt kunnen zijn voor primitief leven. Echter hebben we op aarde nog geen dieren of planten gevonden die zich aan de omstandigheden in de wolken hebben aangepast. Daarom denken wetenschappers dat de kans op leven daar klein is.
   
'''Saturnus'''
+
'''[[Saturnus (planeet)|Saturnus]]'''
   
 
De atmosfeer bestaat uit 95% waterstof en 5% helium. Kans dat daar leven voorkomt, lijkt nihil.
 
De atmosfeer bestaat uit 95% waterstof en 5% helium. Kans dat daar leven voorkomt, lijkt nihil.
   
'''Uranus en Neptunes'''
+
'''[[Uranus (planeet)|Uranus]] en Neptunes'''
   
De temperatuur ligt lager dan -200°C en daarom kan er met zekerheid worden gezegd dat daar geen leven heeft kunnen ontstaan (Volkssterrenwacht Urania, z.d.).
+
De temperatuur ligt lager dan -200&nbsp;°C en daarom kan er met zekerheid worden gezegd dat daar geen leven heeft kunnen ontstaan (Volkssterrenwacht Urania, z.d.).
   
'''Aarde'''
+
'''[[Aarde (planeet)|Aarde]]'''
   
De gemiddelde temperatuur is gemiddeld 15°C. De atmosfeer bestaat uit zuurstof, stikstof, koolstofdioxide en waterdamp (Weeronline, z.d.).
+
De gemiddelde temperatuur is gemiddeld 15&nbsp;°C. De atmosfeer bestaat uit zuurstof, stikstof, koolstofdioxide en waterdamp (Weeronline, z.d.).
   
 
'''[[Maan]]'''
==== Waar is het leven van nu? ====
 
  +
  +
De temperatuur ligt tussen de 116&nbsp;°C en -170&nbsp;°C. De maan heeft geen dampkring, geen oppervlakte water en er is geen (fossiel) leven gevonden. Mogelijk is er waterijs bij de polen. Toch weten wetenschappers het zeker dat de maan een dode wereld is geweest.
  +
 
=== Waar is er leven nu? ===
 
De beste kandidaten voor het leven in de ruimte zijn de manen en planeten die ijskoud zijn. De grootste kans op leven verwachten ze te vinden op de Jupitermaan Europa, Mars, Jupitermaan Enceladus en de Saturnusmaan Titan.
 
De beste kandidaten voor het leven in de ruimte zijn de manen en planeten die ijskoud zijn. De grootste kans op leven verwachten ze te vinden op de Jupitermaan Europa, Mars, Jupitermaan Enceladus en de Saturnusmaan Titan.
  +
[[Bestand:Samenstelling Titan.png|miniatuur|Saturnusmaan Titan]]
 
'''[[Europa (maan)|Jupitermaan Europa]]'''
   
 
De gemiddelde temperatuur is -170&nbsp;°C. Hij is bedenkt met een ijskap vol scheuren met breukvlakken, waarin zich nieuw ijs vormt. Omdat de planeet niet groter wordt, vragen astronomen zich af waar het oude ijs blijft. Ze hebben ontdekt dat het oude ijs in de bodem wordt gedrukt en het met de warmere onderliggende ijslaag versmelt. Onder het ijs gaat een grote zee schuil. In 2020 gaat NASA daar een onderzoek doen.
'''Jupitermaan Europa'''
 
 
De gemiddelde temperatuur is -170°C. Hij is bedenkt met een ijskap vol scheuren met breukvlakken, waarin zich nieuw ijs vormt. Omdat de planeet niet groter wordt, vragen astronomen zich af waar het oude ijs blijft. Ze hebben ontdekt dat het oude ijs in de bodem wordt gedrukt en het met de warmere onderliggende ijslaag versmelt. Onder het ijs gaat een grote zee schuil. In 2020 gaat NASA daar een onderzoek doen.
 
   
 
'''Mars'''
 
'''Mars'''
   
Op Mars is het -63°C. In het ijs van de polen liggen misschien resten van leven. Uit gegevens van vroeger blijkt dat de planeet op de aarde leek. Er stroomde water over het oppervlak en via vulkanische activiteit konden de chemische bouwstenen van het oppervlak, het binnenste van de planeet bereiken. Nu is het oppervlak  droog en kaal, maar micro-organismen kunnen zich verborgen hebben in het ijs en vlak onder het oppervlak (Grubbe, 2017).
+
Op Mars is het -63&nbsp;°C. In het ijs van de polen liggen misschien resten van leven. Uit gegevens van vroeger blijkt dat de planeet op de aarde leek. Er stroomde water over het oppervlak en via vulkanische activiteit konden de chemische bouwstenen van het oppervlak, het binnenste van de planeet bereiken. Nu is het oppervlak  droog en kaal, maar micro-organismen kunnen zich verborgen hebben in het ijs en vlak onder het oppervlak (Grubbe, 2017).
   
'''Saturnusmaan Eceladus'''
+
'''[[Saturnusmaan Eceladus]]'''
   
Op de maan is het -222°C. Onlangs is er waterstof gevonden en met deze vondst beschikt de maan over alle drie de basisvoorwaarden voor leven: water, energiebron en chemische bouwstenen. Met waterstof en kooldioxide kan methaan worden gemaakt. Dat is een basis voor leven, zoals we dat op aarde kennen (Priess, 2017). De maan heeft een vloeibare oceaan onder de dikke ijskap (Grubbe, 2017).
+
Op de maan is het -222&nbsp;°C. Onlangs is er waterstof gevonden en met deze vondst beschikt de maan over alle drie de basisvoorwaarden voor leven: water, energiebron en chemische bouwstenen. Met waterstof en kooldioxide kan methaan worden gemaakt. Dat is een basis voor leven, zoals we dat op aarde kennen (Priess, 2017). De maan heeft een vloeibare oceaan onder de dikke ijskap (Grubbe, 2017).
   
'''Saturnusmaan Titan'''
+
'''Saturnusmaan [[Titan]]'''
   
De atmosfeer bestaat uit zuurstof, kooldioxide en water. Er zijn meren en rivieren die bestaan uit vloeibaar methaan en ethaan. De temperatuur ligt op de -172°C. Onlangs is er in de atmosfeer een stof gevonden dat celmembramen kan ontwikkelen. Deze stof wordt niet op aarde gevonden en dat zou betekenen dat de cellen die daar ontwikkelen niet lijken op de cellen op aarde en daarom een anderen vorm van leven zou kunnen zijn (Viuf, 2017).
+
De atmosfeer bestaat uit zuurstof, kooldioxide en water. Er zijn meren en rivieren die bestaan uit vloeibaar methaan en ethaan. De temperatuur ligt op de -172&nbsp;°C. Onlangs is er in de atmosfeer een stof gevonden dat celmembramen kan ontwikkelen. Deze stof wordt niet op aarde gevonden en dat zou betekenen dat de cellen die daar ontwikkelen niet lijken op de cellen op aarde en daarom een anderen vorm van leven zou kunnen zijn (Viuf, 2017).
   
 
== De zoektocht naar buitenaards leven ==
 
== De zoektocht naar buitenaards leven ==
  +
[[Bestand:Exo HD 189733b.jpg|alt=De witte sterren zijn de exoplaneten|miniatuur|307x307px|Witte sterren zijn de exoplaneten]]
De zoektocht naar leven en water in de ruimte is op dit moment een zoektocht naar bewoonbaarheid. Astronoom Rami Rekola schrijft over de traditionele bewoonbare zone rond een ster. “De druk en temperaturen waarbij vloeibaar water kan bestaan, gevonden worden in gebieden met voldoende, maar niet te warmen en met een aanwezige, maar niet te dichte atmosfeer. Gaswolken zijn te ijl en koud, sterren zijn te heet, hemellichamen dicht bij de ster, zijn te heet en lichamen die ver staan, zijn te koud tenzij ze een plaatselijke warmtebron hebben. Lichamen die te klein zijn, kunnen geen atmosfeer vasthouden’.
+
De zoektocht naar leven en water in de ruimte is op dit moment een zoektocht naar bewoonbaarheid. Astronoom Rami Rekola schrijft over de traditionele bewoonbare zone rond een ster. De druk en temperaturen waarbij er vloeibaar water ontstaan, worden gevonden in gebieden met voldoende niet te warme en te dichte atmosfeer. Gaswolken zijn namelijk te ijl en te koud. Sterren zijn te heet. Hemellichamen dicht bij de ster zijn te heet en lichamen die ver van de ster staan, zijn te koud - tenzij ze een warmtebron hebben. Lichamen die te klein zijn, kunnen geen atmosfeer vasthouden.
   
Deze basisbeperkingen hebben mede de richting bepaald vn onze zoektocht. Toch zijn de beperkingen afgezakt, doordat er water is ontdekt op Europa en Enceladus. Deze manen passen voor een deel binnen de definitie van Rekola: ‘Het vloeibare water bestaat dankzij de getijdenkrachten, doordat ze zich door het intense zwaartekrachtveld van hun moederplaneet bewegen. Het zwaartekrachtveld vervormt de manen en daardoor warmen ze op’. 
+
Het idee van Rekola heeft de richting van onze zoektocht bepaald. Toch zijn de ideeën iets anders geworden, doordat er water is ontdekt op Europa en Enceladus. Het vloeibare water op deze manen ontstaat dankzij de getijdenkrachten. Deze krachten zijn zo zwaar, waardoor de manen vervormen en daardoor opwarmen.
   
Vroeger dacht men dat sterren met grotere zon dan die van ons, de ontwikkeling van intelligent leven onmogelijk zouden maken. Omdat ze hun voorraad waterstof te snel opbranden. Leven zoals we dat op aarde kennen zou dan niet kunnen ontstaan. Kleine sterren branden juist langzaam en de energie die ze afwegen werd zo zwak geacht dat een planeet heel dicht om de ster moet draaien om vloeibaar water te kunnen hebben. In zo’n kleine baan zou de planeet zich aan de ster hechten en aan de ene kant bevriezen en aan de andere kant verkoken.
+
Vroeger dachten astronomen dat planeten met een grotere zon dan die van ons, geen intelligent leven zou kunnen ontwikkelen. Omdat ze hun voorraad waterstof te snel opbranden. Het leven zoals we dat op aarde kennen, zou dan niet kunnen ontstaan. Kleine sterren branden juist langzaam en ze dachten dat de energie van de zon te zwak is, waardoor een planeet heel dicht om de ster moet draaien om vloeibaar water te kunnen hebben. In zo'n kleine baan zou de planeet zich aan de ster hechten en aan de ene kant bevriezen en aan de andere kant verkoken.
 
Deze opvattingen zijn aan het veranderen, omdat we op aarde in steeds extreme omstandigheden leven ontdekken. Denk bijvoorbeeld eens aan de duisternis van de oceaanbodem. Ook door de technologische ontwikkelingen kunnen we zelfs leven buiten ons zonnestelsel zoeken. Deze planeten worden exoplaneten genoemd en sinds de zomer van 2014 zijn er 1800 gevonden. Een onderzoeker brekekende 22% van de rotsachtige planeten die om een zon draaien, dezelfde hoeveelheid energie krijgen als de aarde van de zon. Dat betekent dat er twee miljard planeten zijn die potentie hebben voor vloeibaar water op het oppervlak. Al deze ontdekkingen heeft de buitenwereld een beetje verveld, waardoor de vondst van nieuwe werelden zo gewoon is geworden dat kranten en tv er nauwelijks aandacht aan besteden.
 
   
 
Er zijn veel planeten gevonden, maar daarvan hebben we weinig informatie. Dat komt doordat vele planeten niet groter zijn dan 1 pixel op een grote foto. Daarom is de taak om deze exoplaneten van dichtbij te onderzoeken en hiervoor zijn twee ruimtesondes ontwikkeld (Jha & Vries, 2016).
 
Er zijn veel planeten gevonden, maar daarvan hebben we weinig informatie. Dat komt doordat vele planeten niet groter zijn dan 1 pixel op een grote foto. Daarom is de taak om deze exoplaneten van dichtbij te onderzoeken en hiervoor zijn twee ruimtesondes ontwikkeld (Jha & Vries, 2016).
   
  +
== Welke stappen moeten er in de toekomst gezet worden? ==
== Toekomst ==
 
De mensheid is dus bijna zover om leven buiten ons eigen zonnestelsel op te sporen. Stel dat er op een exoplaneet intelligent leven vinden, dan hebben we een ruimtesonde waarin een boodschap te vinden is. Dat zijn beelden en geluidsfragmenten die gaan over positieve zaken. Stel dat buitenaardse wezens ons eerst vinden, dan worden ze ontvangen door de Verenigde Naties. Echter vinden wetenschappers het een betere taak voor een onderzoeker, omdat hij heeft geleerd om objectief verslag te doen en hij geen militaire of politieke belangen heeft. Het eerste contact moet heel voorzichtig uitgevoerd worden, omdat wij of zij misschien bedreigende micro-organismen bij zich dragen. Daarom zal het ruimtevaartuig in quarantaine moeten en het individu dat contact legt, een speciaal pak dragen (Kraaijvanger, 2015).
+
De mensheid is dus bijna zover om leven buiten ons eigen zonnestelsel te zoeken. Als we een exoplaneet vinden waarop intelligent leven is, dan hebben we een ruimtesonde waarin een boodschap te vinden is. Dat zijn beelden en geluidsfragmenten die over positieve zaken gaan. Stel dat buitenaardse wezens ons eerst vinden, dan worden ze ontvangen door de Verenigde Naties. Toch vinden wetenschappers de eerste ontmoeting een taak voor een onderzoeker, omdat hij heeft geleerd om goed verslag te doen en omdat hij geen militaire of politieke belangen heeft. Het eerste contact moet heel voorzichtig uitgevoerd worden, omdat wij of zij misschien bedreigende bacteriën bij zich dragen. Daarom zal het ruimtevaartuig in quarantaine moeten en de persoon dat het eerste contact legt, een speciaal pak dragen (Kraaijvanger, 2015).
  +
  +
Sthephen Hawking vindt het niet verstandig om signalen naar buitenaards leven te sturen. Hij vindt dat heel gevaarlijk en misschien vinden buitenaardse wezens ons net zo waardevol als dat wij bacteriën vinden. Het is riskant om contact op te nemen, omdat zij misschien duizenden, miljoenen of miljarden jaren verder is dan de mensheid. Hij vindt het dus gevaarlijk en onverstandig, maar toch gaat hij samen met Yuri Milner een ruimtevaartuig naar een buurster sturen (Het zonnestelsel naast die van ons). Om daar onderzoek te doen naar leven (Kraaijvanger, 2016). Hawking zei: "De mens voelt een diepe behoefte om te ontdekken, te leren, te weten. Maar we zijn ook sociale wezens. Het is belangrijk voor ons om te weten of we alleen zijn in het donker". Ook zei hij dat we moeten niet schreeuwen in de kosmos, omdat die hogere levensvormen weleens net zulk agressieve, gewelddadige karaktereigenschappen zouden kunnen hebben als wij (mensen).
   
 
== Bronnen ==
Sthephen Hawking vindt het niet verstandig om signalen naar buitenaardse beschavingen te sturen. Hij zegt: “Dit kan heel gevaarlijk zijn en het ergste is dat we al decennia signalen uitzenden. Wellicht vinden buitenaardse wezens ons net zo waardevol als dat wij bacteriën binden”. Het is riskant om contact op te nemen, omdat zij misschien duizenden, miljoenen of miljarden jaren verder is dan de mensheid. Hawking denkt hetzelfde over kunstmatige intelligentie. “Kunstmatige intelligentie is het beste of het slechtste wat de mensheid kan overkomen. Het kan zich op hogesnelheid herontwerpen, terwijl wij mensen het moeten doen met langzame, biologische evolutie”.
 
  +
*De Telegraaf. (2019, 31 december). ''André Kuipers: 'Binnen 10 jaar vinden we buitenaards leven'''. Geraadpleegd op 8 oktober 2022, van https://www.youtube.com/watch?v=rFwiOtzFw2E
  +
*Dekennisvannu. (2012, 3 oktober). Het heelal krioelt van het leven. Geraadpleegd op 29 september 2017, van https://dekennisvannu.nl/site/artikel/Het-heelal-krioelt-van-het-leven/5965
  +
*European Space Agency. (2000 - 2014). ''Buitenaards leven''. Geraadpleegd op 29 september 2017, van https://www.esa.int/esaKIDSnl/SEM476XJD1E_LifeinSpace_0.html
  +
*Engels, J. (2013, 29 juni). In het heelal wemelt het van leven. Geraadpleegd op 29 september 2017, van https://www.trouw.nl/home/in-het-heelal-wemelt-het-van-leven~aa5a9ac2/
  +
*Grubbe, K. (2017, 8 maart). Waar in de ruimte is de kans op leven het grootst? Geraadpleegd op 29 september 2017, van http://wibnet.nl/heelal/leven-op-andere-planeten/leven-in-de-ruimte-op-welke-hemellichamen-is-de-kans-het-grootst
  +
*Jha, D., & Vries de, A. (2016, 5 maart). De rol van water in de zoektocht naar buitenaards leven. Geraadpleegd op 29 september 2017, van https://www.scientias.nl/waarom-is-water-belangrijk-voor-de-zoektocht-naar-aliens/
  +
*Kraaijvanger, C. (2015, 11 oktober). Wat als… de aliens op aarde landen? Geraadpleegd op 30 september 2017, van https://www.scientias.nl/wat-als-de-aliens-op-aarde-landen/
  +
*Kraaijvanger, T. (2016, 7 november). Stephen Hawking: “We moeten niet langer aliens proveren aan te roepen”. Geraadpleegd op 29 september 2017, van https://www.scientias.nl/stephen-hawking-we-moeten-langer-aliens-proberen-aan-roepen/
  +
*NOS. (2015, 20 juli). Ultieme zoektocht naar intelligent buitenaards leven. Geraadpleegd op 29 september 2017, van https://nos.nl/artikel/2048029-ultieme-zoektocht-naar-intelligent-buitenaards-leven.html
  +
*Priess, J. (2017, 18 april). Alle voorwaarden voor leven gevonden op Saturnusmaan. Geraadpleegd op 29 september 2017, van http://wibnet.nl/heelal/leven-op-andere-planeten/alle-voorwaarden-voor-leven-gevonden-op-saturnusmaan
  +
*Viuf, B. (2017, 25 juli). Saturnusmaan kan ander leven huisvesten. Geraadpleegd op 29 september 2017, van http://wibnet.nl/heelal/leven-op-andere-planeten/saturnusmaan-kan-ander-leven-huisvesten
  +
*Vium, N. (2016, 12 augustus). Wetenschap: Venus was wellicht bewoonbaar. Geraadpleegd op 29 september 2017, van http://wibnet.nl/heelal/leven-op-andere-planeten/wetenschap-venus-was-wellicht-bewoonbaar
  +
*Volkssterrenwacht Urania. (z.d.). Leven in het zonnestelsel. Geraadpleegd op 29 september 2017, van http://www.urania.be/astronomie/dossiers/leven-in-het-heelal/leven-in-het-zonnestelsel
  +
*Weeronline. (z.d.). Atmosfeer. Geraadpleegd op 29 september 2017, van http://www.weeronline.nl/atmosfeer/3024/0
   
  +
[[Categorie:Heelal]]
Desondanks willen Hawking en Yuri Milner een ruimtevaartuig naar een buurster sturen, om daar onderzoek te doen naar leven (Kraaijvanger, 2016). Zo zei hij: “De mens voelt een diepe behoefte om te ontdekken, te leren en te weten, maar we zijn ook sociale wezens. Het is belangrijk voor ons om te weten of we alleen zijn. Dit wordt het meest krachtige, uitgebreide en intensieve wetenschappelijk onderzoek dat ooit werd ondernomen naar signalen van intelligent leven” (Boer, 2015). Wel wil Hawking alleen luisteren. “We moeten niet schreeuwen in de kosmos, omdat die hogere levensvormen weleens net zulk agressieve, gewelddadige karaktereigenschappen hebben als wij” (NOS, 2015).
 

Huidige versie van 29 feb 2024 om 14:52

Voorstelling van hoe een buitenaards wezen eruit zou kunnen zien

Buitenaards leven is leven dat niet op aarde voorkomt. Deze buitenaardse wezens worden ook wel aliens genoemd. Al jaren lang wordt en gefantaseerd over hoe ze eruit zien. Toen de sciencefiction opkwam, werden ze afgebeeld als groene mannetjes met grote ogen. Maar nu het buitenaards leven steeds dichterbij komt, krijgen wetenschappers een beter beeld van de aliens. Je het zou het misschien niet verwachten, maar het lijkt er niet op dat de buitenaardse wezens groene marsmannetjes zijn. Ruimtevaartorganisaties zoals NASA hebben een paar mogelijk bewoonbare planeten ontdekt buiten ons zonnestelsel. Deze planeten liggen in de bewoonbare zone en daar zou dus misschien leven kunnen zijn (maar we weten het niet zeker). Tot nu toe is er nog geen buitenaards leven ontdekt. De Nederlandse astronaut André Kuipers heeft in 2019 gezegd dat hij denkt dat we binnen 10 jaar buitenaards leven zullen vinden.

Wat is er nodig om te kunnen leven?

Vloeibaar water is belangrijk.

Om te kunnen leven heb je net zoals hier op aarde water, energie (uit eten) en zuurstof nodig. De wetenschappers zijn er al achter gekomen dat er in het heelal geen zuurstof is en daarom kijken de wetenschappers naar water, energie en chemie. Alle cellen van levende wezens (mens, dier en plant) op aarde bevatten vloeibaar water (waaronder bloed) en het leven is in zee ontstaan. Daarom denken de wetenschappers dat een stabiele hoeveelheid vloeibaar water een voorwaarde is voor leven zoals wij dat hier op aarde kennen. Alle levende dieren en planten hebben een stofwisseling die energie vereist. Dat kan van de zon afkomen of uit voedsel worden gehaald. Wetenschappers hebben ontdekt dat de aarde is opgebouwd uit stoffen: waterstof, koolstof en stikstof. Deze stoffen moeten ook elders te vinden zijn (Grubbe, 2017). Met vooral schotelantennes speuren de astronomen naar verre planeten waar deze stoffen voor kunnen komen, want misschien is daar dan ook leven.

Als we het aan professor John Heise vragen, is het belangrijk om eerst te onderzoeken hoe het leven hier op aarde is ontstaan en daarna pas de ruimte in te gaan om daar te zoeken. Veel wetenschappers gaan ervan uit dat er eerst niet-levende materie is ontstaan als basis voor levende materie. Waarschijnlijk begon het met een RNA-fase, een heel klein klein deeltje dat DNA kopieert en erop lijkt. "Als je eenmaal RNA hebt, dan heb je een begin, omdat het zichzelf kan maken", zei John Heise.

Om in te schatten hoe groot de kans is dat er op een bewoonbare planeet leven ontstaat, dan is het belangrijk om te weten hoe lang het duurde voordat er hier op aarde leven ontstond. We vergelijken zo het ontstaan van de aarde met de tijd van 1 jaar: als je bedenkt dat op 1 januari de aarde ontstaat en op 31 december 23:50 uur lopen de mensen rond, dan ontstaat begin maart de eerste blauwalg. Op 31 juli krijgt de aarde daardoor een zuurstof-rijk water. Dat houdt in dat er vanaf 1 januari tot 1 maart niet erg veel gebeurde. Toen er eindelijk iets gebeurde moesten we nog 4 maanden wachten voordat er zuurstof in de lucht komt. Op 15 november ontstaan de eerste water-diertjes en op 15 december de eerste zoogdieren. Dus vanaf juli tot november heeft de aarde tijd nodig gehad om de eerste waterdiertjes te ontwikkelen. Daarna duurt het nog een maand voordat de eerste zoogdieren ontstaan. Op 31 december om 22:00 loopt de allereerste mens rond en om 23:50 lopen de mensen (Homo sapiens) rond zoals die we van nu kennen (uit: Dekennisvannu, 2012).

Een astronoom Marco Spaans zegt dat het heelal een hele goede omgeving is voor het ontstaan van leven, omdat de drie basisvoorwaarden in overvloed aanwezig is. De drie basisvoorwaarden waren zoals gezegd water, energie en chemie. Marco Spaans stelt niet de vraag: wat is er nodig om te kunnen leven, maar de vraag: "Krijgt het leven de kans om te overleven?" De eerste stap is de vorming van een cel, wat op aarde een miljard jaar (1.000.000.000) duurde. De omstandigheden moeten al die tijd gelijk blijven. Op aarde was dat goed geregeld. We zitten in een rustige baan, we hebben een grote maan die de aarde op zijn plek houdt en een magnetisch veld dat gevaarlijke straling tegenhoudt. Ook worden we beschermd door Jupiter die puin uit de ruimte opzuigt.

Marco Spaans zegt dat ze weten dat het leven in één op de duizend gevallen ontstaat. Dus als er een miljard planeten in een leefbare zone zitten, dan zijn er een miljoen planeten waar bacteriën zouden kunnen leven. Even in wat gemakkelijkere cijfers: Marco Spaans zegt als er 1000 planeten in een leefbare zone zitten, dat er 1 planeet is waar bacteriën kunnen leven. Maar er zijn geen 1.000 planeten, maar heel veel meer! Dus dat zijn heel veel planeten waar bacteriën kunnen ontstaan! Als we dat weten, willen we weten op hoeveel van die planeten iets intelligents zoals een mens (of een vergelijkbaar wezen) kan groeien. Het is belangrijk dat je bedenkt dat 99,99% van het leven op aarde uit bacteriën bestaat. 0,01% bestaat uit plantjes en kwallen en wij mensen zijn het topje. Ook moet je bedenken dat de aarde 4,5 miljard jaar oud is en dat de mens pas een paar miljoen jaar op deze aarde mee gaat. Ons technologisch vermogen is zelfs nog jonger en we zenden pas 50 jaar krachtige radiosignalen uit. Een paar eeuwen op vier miljard jaar is niet meer dan een flits, als je het ontstaan van de aarde weer even vergelijkt met een jaar. Dat betekent dat wij voor een andere beschaving heel moeilijk te vinden zijn (Engels, 2013).

Leven in ons zonnestelsel

Ons zonnestelsel

Mercurius

De temperatuur ligt tussen 465 °C overdag en -185 °C’s nachts. Door de ontbrekende atmosfeer wordt er geen ultraviolet straling tegen gehouden. De planeet is te klein om een dampkring vast te houden, waardoor er geen vloeibaar water is. Wetenschappers denken dat het onwaarschijnlijk is dat de planeet leven heeft gekend.

Venus

De atmosfeer houdt de warmte goed vast door de grote hoeveelheid koolstofdioxide. De temperatuur loopt op tot 475 °C. Hoog in de atmosfeer is het 25 °C. Wolken bestaan voor 75% uit zwavelzuur en 25% uit waterdamp. Het is mogelijk dat daar leven bestaat, maar de kans is klein. Wetenschappers vermoeden dat het verleden van Venus zachter was, omdat hij even groot is als de aarde en het uit hetzelfde soort gesteente bestaat. Als de modellen kloppen, bestaat er kans dat er leven is geweest (Vium, 2016).

Mars

De atmosfeer is te ijl om warmte vast te houden. In de zomer komt de temperatuur rond de evenaar net boven de nul uit. Er is geen vloeibaar water, wel ijs en permafrost. Door de atmosfeer wordt er geen ultraviolet straling tegengehouden. Toch denken wetenschappers dat er primitief leven is geweest.

Jupiter

De atmosfeer bestaat uit waterstof en helium. Door de waterdruppeltjes in de wolken, zou het geschikt kunnen zijn voor primitief leven. Echter hebben we op aarde nog geen dieren of planten gevonden die zich aan de omstandigheden in de wolken hebben aangepast. Daarom denken wetenschappers dat de kans op leven daar klein is.

Saturnus

De atmosfeer bestaat uit 95% waterstof en 5% helium. Kans dat daar leven voorkomt, lijkt nihil.

Uranus en Neptunes

De temperatuur ligt lager dan -200 °C en daarom kan er met zekerheid worden gezegd dat daar geen leven heeft kunnen ontstaan (Volkssterrenwacht Urania, z.d.).

Aarde

De gemiddelde temperatuur is gemiddeld 15 °C. De atmosfeer bestaat uit zuurstof, stikstof, koolstofdioxide en waterdamp (Weeronline, z.d.).

Maan

De temperatuur ligt tussen de 116 °C en -170 °C. De maan heeft geen dampkring, geen oppervlakte water en er is geen (fossiel) leven gevonden. Mogelijk is er waterijs bij de polen. Toch weten wetenschappers het zeker dat de maan een dode wereld is geweest.

Waar is er leven nu?

De beste kandidaten voor het leven in de ruimte zijn de manen en planeten die ijskoud zijn. De grootste kans op leven verwachten ze te vinden op de Jupitermaan Europa, Mars, Jupitermaan Enceladus en de Saturnusmaan Titan.

Saturnusmaan Titan

Jupitermaan Europa

De gemiddelde temperatuur is -170 °C. Hij is bedenkt met een ijskap vol scheuren met breukvlakken, waarin zich nieuw ijs vormt. Omdat de planeet niet groter wordt, vragen astronomen zich af waar het oude ijs blijft. Ze hebben ontdekt dat het oude ijs in de bodem wordt gedrukt en het met de warmere onderliggende ijslaag versmelt. Onder het ijs gaat een grote zee schuil. In 2020 gaat NASA daar een onderzoek doen.

Mars

Op Mars is het -63 °C. In het ijs van de polen liggen misschien resten van leven. Uit gegevens van vroeger blijkt dat de planeet op de aarde leek. Er stroomde water over het oppervlak en via vulkanische activiteit konden de chemische bouwstenen van het oppervlak, het binnenste van de planeet bereiken. Nu is het oppervlak  droog en kaal, maar micro-organismen kunnen zich verborgen hebben in het ijs en vlak onder het oppervlak (Grubbe, 2017).

Saturnusmaan Eceladus

Op de maan is het -222 °C. Onlangs is er waterstof gevonden en met deze vondst beschikt de maan over alle drie de basisvoorwaarden voor leven: water, energiebron en chemische bouwstenen. Met waterstof en kooldioxide kan methaan worden gemaakt. Dat is een basis voor leven, zoals we dat op aarde kennen (Priess, 2017). De maan heeft een vloeibare oceaan onder de dikke ijskap (Grubbe, 2017).

Saturnusmaan Titan

De atmosfeer bestaat uit zuurstof, kooldioxide en water. Er zijn meren en rivieren die bestaan uit vloeibaar methaan en ethaan. De temperatuur ligt op de -172 °C. Onlangs is er in de atmosfeer een stof gevonden dat celmembramen kan ontwikkelen. Deze stof wordt niet op aarde gevonden en dat zou betekenen dat de cellen die daar ontwikkelen niet lijken op de cellen op aarde en daarom een anderen vorm van leven zou kunnen zijn (Viuf, 2017).

De zoektocht naar buitenaards leven

De witte sterren zijn de exoplaneten
Witte sterren zijn de exoplaneten

De zoektocht naar leven en water in de ruimte is op dit moment een zoektocht naar bewoonbaarheid. Astronoom Rami Rekola schrijft over de traditionele bewoonbare zone rond een ster. De druk en temperaturen waarbij er vloeibaar water ontstaan, worden gevonden in gebieden met voldoende niet te warme en te dichte atmosfeer. Gaswolken zijn namelijk te ijl en te koud. Sterren zijn te heet. Hemellichamen dicht bij de ster zijn te heet en lichamen die ver van de ster staan, zijn te koud - tenzij ze een warmtebron hebben. Lichamen die te klein zijn, kunnen geen atmosfeer vasthouden.

Het idee van Rekola heeft de richting van onze zoektocht bepaald. Toch zijn de ideeën iets anders geworden, doordat er water is ontdekt op Europa en Enceladus. Het vloeibare water op deze manen ontstaat dankzij de getijdenkrachten. Deze krachten zijn zo zwaar, waardoor de manen vervormen en daardoor opwarmen.

Vroeger dachten astronomen dat planeten met een grotere zon dan die van ons, geen intelligent leven zou kunnen ontwikkelen. Omdat ze hun voorraad waterstof te snel opbranden. Het leven zoals we dat op aarde kennen, zou dan niet kunnen ontstaan. Kleine sterren branden juist langzaam en ze dachten dat de energie van de zon te zwak is, waardoor een planeet heel dicht om de ster moet draaien om vloeibaar water te kunnen hebben. In zo'n kleine baan zou de planeet zich aan de ster hechten en aan de ene kant bevriezen en aan de andere kant verkoken.

Er zijn veel planeten gevonden, maar daarvan hebben we weinig informatie. Dat komt doordat vele planeten niet groter zijn dan 1 pixel op een grote foto. Daarom is de taak om deze exoplaneten van dichtbij te onderzoeken en hiervoor zijn twee ruimtesondes ontwikkeld (Jha & Vries, 2016).

Welke stappen moeten er in de toekomst gezet worden?

De mensheid is dus bijna zover om leven buiten ons eigen zonnestelsel te zoeken. Als we een exoplaneet vinden waarop intelligent leven is, dan hebben we een ruimtesonde waarin een boodschap te vinden is. Dat zijn beelden en geluidsfragmenten die over positieve zaken gaan. Stel dat buitenaardse wezens ons eerst vinden, dan worden ze ontvangen door de Verenigde Naties. Toch vinden wetenschappers de eerste ontmoeting een taak voor een onderzoeker, omdat hij heeft geleerd om goed verslag te doen en omdat hij geen militaire of politieke belangen heeft. Het eerste contact moet heel voorzichtig uitgevoerd worden, omdat wij of zij misschien bedreigende bacteriën bij zich dragen. Daarom zal het ruimtevaartuig in quarantaine moeten en de persoon dat het eerste contact legt, een speciaal pak dragen (Kraaijvanger, 2015).

Sthephen Hawking vindt het niet verstandig om signalen naar buitenaards leven te sturen. Hij vindt dat heel gevaarlijk en misschien vinden buitenaardse wezens ons net zo waardevol als dat wij bacteriën vinden. Het is riskant om contact op te nemen, omdat zij misschien duizenden, miljoenen of miljarden jaren verder is dan de mensheid. Hij vindt het dus gevaarlijk en onverstandig, maar toch gaat hij samen met Yuri Milner een ruimtevaartuig naar een buurster sturen (Het zonnestelsel naast die van ons). Om daar onderzoek te doen naar leven (Kraaijvanger, 2016). Hawking zei: "De mens voelt een diepe behoefte om te ontdekken, te leren, te weten. Maar we zijn ook sociale wezens. Het is belangrijk voor ons om te weten of we alleen zijn in het donker". Ook zei hij dat we moeten niet schreeuwen in de kosmos, omdat die hogere levensvormen weleens net zulk agressieve, gewelddadige karaktereigenschappen zouden kunnen hebben als wij (mensen).

Bronnen

Afkomstig van Wikikids , de interactieve Nederlandstalige Internet-encyclopedie voor en door kinderen. "https://wikikids.nl/index.php?title=Buitenaards_leven&oldid=845025"