Evolutie van de trein

Uit Wikikids
Naar navigatie springen Naar zoeken springen
Stap6.gifDit artikel is (gedeeltelijk) geschreven door Pabo-studenten van Hogeschool Utrecht en blijft in ieder geval staan tot de beoordeling is gegeven in februari 2018.Nuvola apps kwrite.png

De evolutie van de trein is een andere omschrijving voor de ontwikkeling van de trein van begin tot nu en in de toekomst. Dit artikel gaat over deze ontwikkeling; met welke trein is het begonnen en welke treinen zijn de treinen van de toekomst.

De eerste trein

Trekschuit

Voor dat de trein bestond verplaatsen mensen zich veelal over land lopend, met een diligence (koets) of over water met de trekschuit. De trekschuit is een boot die werd voortgetrokken door een paard op de kant. Voor de trekschuiten werden speciale trekvaarten aangelegd. Men was gewend dat reizen langzaam ging en tegen de komst van de trein was in het begin dan ook veel weerstand. Deze weerstand kwam vooral voor uit angst voor het onbekende. Schippers en koetsiers waren bang dat ze geen werk meer zouden hebben als de trein de trekschuiten en diligence zou vervangen. De boeren langs de spoorlijnen dachten dat de paarden in de wei op hol zouden slaan als de trein langs zou razen en koeien zouden van schrik zure melk gaan geven. Sommige artsen waren er zelfs van overtuigd dat reizen met de trein heel ongezond zou zijn, want ons lichaam kon helemaal niet tegen die snelheid. Ook bestond er angst voor ongelukken, ontploffingen en ontsporingen. Maar de ontwikkeling was niet tegen te houden en rond 1900 was de trein het belangrijkste vervoermiddel in Nederland.

De stoommachine

De evolutie van de trein begint bij de ontwikkeling van de stoommachine. In 1702 vindt Thomas Newcomen de stoommachine uit. De uitvinding wordt in eerste instantie gebruikt in de mijnindustrie om water weg te kunnen pompen uit steenkolenmijnen. James Watt verbeterde de uitvinding van Newcomen tot een machine om kracht over te brengen. Hij vroeg in 1769 pantent aan op zijn uitvinding.Watt kennen we ook als eenheid voor energie en dank zijn naam dus aan James Watt.

De stoomtrein

Stoomtrein

In 1765 werd de stoomtrein uitgevonden door de Engelsman Richard Trevithick. In 1804 introduceerde hij de eerste stoomlocomotief op die op rails reed. Om met een stoomlocomotief te rijden heb je twee dingen nodig: water en vuur (kolen). Het vuur brengt het water aan de kook en daardoor ontstaat stoom. Als er steeds meer stoom bijkomt ontstaat er druk. De stoom van de stoomtrein gaat door pijpen naar een zuiger en die drijft de wielen aan. Een stoomtrein haalde een snelheid van ongeveer 38 km/u. Stoomlocomotieven werden in Nederland tot 1958 gebruikt. Daarmee was Nederland het eerste land dat de stoomtractie helemaal afschafte.

De dieseltrein

Dieseltrein

In 1892 vindt Rudolf Diesel de dieselmotor uit. De trein wordt met deze verbrandingsmotor door ontwikkeld. Wie precies de dieseltrein heeft uitgevonden is onbekend we weten wel dat In Duitsland de eerste dieseltrein werd ontworpen en gebouwd. Diesel is de brandstof voor een dieseltrein en wordt gewonnen uit aardolie. De dieseltrein heeft door zijn techniek veel minder energieverlies dan de stoomtrein.

De elektrische trein

Elektrische trein

Tussen 1908 en 1958 veranderde er veel bij de spoorwegen. Vanaf 1924 werden steeds meer treinen elektrisch. Deze trein is veel beter voor het milieu dan de vervuilende dieseltrein. De elektrische treinen uit die tijd werkten net zoals de elektrische treinen van nu. Een elektrische trein haalt de energie die hij nodig heeft om te kunnen rijden niet uit kolen, maar uit de bovenleiding: elektrische stroom. In de trein of de elektrische locomotief zit een groot aantal weerstanden die de stroom tegen kunnen houden. Als de trein begint te rijden zijn bijna al deze weerstanden ingeschakeld tussen de bovenleiding en de tractiemotoren (de motoren die de wielen voortbewegen). Hoe sneller de machinist wil rijden, hoe meer weerstanden hij uitschakelt, dus hoe meer stroom er naar de motoren gaat. De elektrische trein haalt ongeveer een snelheid van 180 km/u.

De hogesnelheidstrein

Hogesnelheidstrein

In 1930 was de eerste hogesnelheidstrein een stoomlocomotief genaamd Mallard uit Engeland zijn topsnelheid was 203 km per uur. Maar het duurde nog tot 1995 tot er echt een Hoge Snelheids Lijn (HSL) tot stand kwam. Op deze lijn rijdt de TGV (Train à Grande Vitesse) en deze zorgt voor een supersnelle internationale treinverbinding van Brussel naar Parijs. De TGV is met een gemiddelde snelheid van 300 km per uur zo snel dat de trein binnen Europa zelfs kan concurreren met het vliegtuig. Een andere hogesnelheidstrein is de Thalys die sinds 2006 rijdt van Amsterdam via Rotterdam naar Brussel en Parijs. Voor de Thalys is een speciaal spoor aangelegd. De ICE is de Duitse Intercity Express en zorgt voor een supersnelle verbinding van Nederland met Duitsland. De HighSpeed 1 en de Eurostar zijn hogesnelheidstreinen die rijden tussen Engeland (de Kanaaltunnel) en het vasteland van Europa. Een hogesnelheidstrein (HST) legt over een speciaal aangelegd spoor dus met hoge snelheid grote afstanden af.

Een hogesnelheidstrein is een 'normale' elektrische trein en rijdt op rails, maar mede door zijn stroomlijning kan hij veel harder rijden. De hogesnelheidstrein wordt aangedreven door elektromotoren. Als die onder stroom komen, veranderen ze in elektromagneten. Zodra de stroom wegvalt, stopt de motor. De vering van de trein, om schokken op te vangen, is heel belangrijk voor een prettige en veilige rit. Sommige treinen hebben stalen veren, andere hebben luchtveren. De remmen zijn heel belangrijk bij een HST, omdat de remweg bij een snelheid van 290 km per uur wel 5 kilometer is! 

De magneetzweeftrein

Magneetzweeftrein

Er bestaat ook een andere techniek, waarmee treinen een stuk hogere snelheden (tot 600km/u) kunnen halen terwijl er minder energie voor nodig is: de techniek van de magneetzweeftrein . De naam van een magneetzweeftrein zegt het belangrijkste al: een magneetzweeftrein is een trein die door magneten zwevend wordt gehouden.

Techniek

Deze trein rijdt niet op rails, maar "op" een betonnen baan. In die betonnen baan en aan de trein zitten magneten. Een magneet heeft twee ‘polen’, de noordpool en de zuidpool. Een noordpool en een zuidpool trekken elkaar aan, terwijl twee dezelfde polen elkaar altijd afstoten. Van deze techniek wordt gebruik gemaakt bij de magneetzweeftrein. De magneetzweeftrein maakt ook gebruik van de techniek elektromagnetisme. Een elektromagneet werkt op stroom, en kan dus aan- en uitgezet worden. Als de elektromagneten in de baan van de trein aan staan, worden de permanente magneten aan de trein zelf daardoor aangetrokken, waardoor de hele trein omhoog komt. Doordat een computer de elektromagneten aan- en uitzet, blijft de trein op een constante afstand van de baan zweven. Op dezelfde manier zorgen magneten aan de zijkant van de baan ervoor dat de trein de baan niet raakt, bijvoorbeeld in de bochten.

Aandrijving

In de baan van de magneetzweeftrein zit niet één lange magneet, maar een lange rij elektromagneten naast elkaar. Aan de trein zitten steeds afwisselend noord- en zuidpolen. De polen van een elektromagneet kunnen verwisselen door de richting waarin de stroom loopt om te keren. Door het aantrekken en afstoten van de polen zal de trein uit zichzelf altijd bewegen naar een positie waarin elke noordpool tegenover een zuidpool staat en andersom. Als de de stroom van richting verandert, staat elke noordpool weer tegenover een noordpool en elke zuidpool weer tegenover een zuidpool en beweegt de trein verder. Als de stroom dus steeds van richting verandert zal de trein vooruit blijven bewegen en hoe vaker de stroom van richting verandert hoe sneller de trein gaat.

Voordeel

Een groot voordeel van een magneetzweeftrein is dat er veel minder energie nodig is om vooruit te komen dan bij een elektrische trein. Een elektrische trein heeft namelijk altijd te maken met wrijving door beweging in de motor, aan de assen en van de wielen. Wrijving zorgt voor energieverlies . Bij een magneetzweeftrein is er bijna geen wrijving, want deze trein heeft geen onderdelen die bewegen. De motor zit in de betonnen baan en de trein raakt de baan niet. Er treedt dus nergens wrijving op. De trein heeft alleen last van luchtwrijving doordat de trein zich verplaatst. Door de minimale wrijving die de magneetzweeftrein ervaart slijten zijn onderdelen bijna niet en dat is dus nog een voordeel.

De trein van de toekomst

De trein van de toekomst zal waarschijnlijk niet meer op een rails rijden. Er zijn al concepten bedacht waarbij treinen zweven door de lucht verbonden met ringen op steunpilaren. Het grote voordeel van deze techniek is de enorme kostenbesparing in energie en materieel. Bij dit concept zitten de de motor en de wielen in de ringen op steunpilaren. Het treinstel rust minimaal op drie pilaren, waardoor de mogelijkheid tot ontsporen is weggenomen. Door het gebruik van deze techniek, die gebaseerd is op de techniek van de magneetzweeftrein, zijn de kosten voor een trein wel 60 procent lager dan nu het geval is. Deze kostenbesparing zit vooral in de aanlegkosten van een conventioneel spoor en deze trein zal ook een grote energiebesparing opleveren. Doordat de trein wordt voortbewogen door wielen die in zijkant van de steunpilaren zitten, zal de trein eenmaal op snelheid maar weinig energie verbruiken om de kruissnelheid te handhaven. Het enige probleem waarmee waar de ontwerpers van deze trein nog mee zitten zijn de steunpilaren op zich. Deze zullen op elk stadsbeeld een flinke impact hebben. Maar volgens de bedenkers kunnen deze pilaren helemaal naar wens in het bestaande stadsbeeld worden geïntegreerd of in de omgeving worden opgenomen.

Bronnen

De Bruin, R. & Bosua, M. (2013). Geschiedenisgeven. Praktische vakdidactiek voor het basisonderwijs. Assen: van Gorcum.

Asselberghs, M.A. (1981). Daar komt de trein. Amsterdam: de Bezige Bij B.V.

Baaijens, S., Bruinsma, F., Nijkamp, P., Peeters, P., Peters, P., & Rietveld, P., (1995). Slow motion: een andere kijk op snelheid. Infrastructuur, transport en logistiek. Delft: Delftse Universitaire Pers. Geraadpleegd op 2 november 2017, van https://repository.tudelft.nl/islandora/object/uuid:6fa5534f-b710-4e86-bd02-3d49bf127baf/datastream/OBJ

Spoorwegmuseum. Geraadpleegd op 5 november 2017, van https://www.spoorwegmuseum.nl/download/spreekbeurtpakket_spwg.pdf

Sciencespace. Geraadpleegd op 5 november 2017, van https://www.sciencespace.nl/technologie/artikelen/3840/de-magneetzweeftrein

OVPRO. Geraadpleegd op 5 november 2017, van https://www.ovpro.nl/trein/2012/06/27/tubelar-rail-gooit-concept-trein-op-rails-om/

Afkomstig van Wikikids , de interactieve Nederlandstalige Internet-encyclopedie voor en door kinderen. "https://wikikids.nl/index.php?title=Evolutie_van_de_trein&oldid=496169"